¾Õ¼ 1Â÷¿ø¿¡´ëÇØ À¯µµÇß´ø ºÐ»ê°ü°è½Ä°ú Æĵ¿¹æÁ¤½ÄÀº ½±°Ô 2Â÷¿øÀ̳ª 3Â÷¿ø¿¡ÀÇ ½ÄÀ¸·Î ¹Ù²Ü ¼ö ÀÖ´Ù. 2Â÷¿øÀ̳ª 3Â÷¿øÀÇ °æ¿ì´Â \[ \vec{p} =\hbar \vec{k} \] \[ E= \hbar \omega \] ÀÌ°í, ºÐ»ê°ü°è½ÄÀº \[ \omega = \frac{\hbar}{2m} |\vec{k}|^2 \]
´ÙÀ½ÀÇ Æò¸éÆÄ¿¡ ´ëÇØ ºÐ»ê°ü°è¿Í °ü·Ã½ÃÄѺ¸ÀÚ. \[ \Psi(\vec{r}, t) = \Psi_0 e^{i(\vec{k} \cdot \vec{r}-\omega t)} \] 1Â÷¿ø¿¡¼Ã³·³ ÀÌ ½Ä°ú Æò¸éÆĸ¦ ¿¬°ü½ÃÅ°¸é ´ÙÀ½ÀÇ 2Â÷¿ø¿¡¼ÀÇ Æĵ¿¹æÁ¤½ÄÀ» ¾òÀ» ¼ö ÀÖ´Ù. \[ i \hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = - \frac{\hbar^2}{2m} \left( \frac{\partial^2 \Psi(\vec{r},t)}{\partial x^2} + \frac{\partial^2 \Psi(\vec{r},t)}{\partial y^2} \right) \]
_ Æĵ¿¹æÁ¤½Ä_ ºÐ»ê°ü°è_ Æò¸éÆÄ
|