¼öÂ÷ȸÀýÀÌ·Ð


Á¦¸£´ÏÄÉ ÇÔ¼ö

photo

Á¦¸£´ÏÄÉ(F. Zernike: 1888~1966)_À§»óÂ÷ Çö¹Ì°æÀ» ¹ß¸íÇÏ¿© 1953³â ³ëº§¹°¸®ÇлóÀ» ¼ö»óÇÑ ³×´ú¶õµåÀÇ ¹°¸®ÇÐÀڷμ­ Á¦¸£´ÏÄÉ ÇÔ¼ö¸¦ µµÀÔÇؼ­ Æĸé¼öÂ÷¸¦ °è¿­º°·Î Ç¥ÇöÇÒ ¼ö ÀÖ°Ô ÇÏ¿´´Ù.

À§»óÂ÷ Çö¹Ì°æÀ» ¹ß¸íÇؼ­ 1953³â ³ëº§¹°¸®ÇлóÀ» ¼ö»óÇÑ ³×´ú¶õµåÀÇ Á¦¸£´ÏÄÉ(F. Zernike)´Â Æĸé¼öÂ÷¸¦ È¿À²ÀûÀ¸·Î Ç¥ÇöÇÒ ¼ö ÀÖ´Â ´ÙÇ׽İú À̸¦ ÀÌ¿ëÇÑ ÇÔ¼ö¸¦ µµÀÔÇß´Ù. À̸¦ Á¦¸£´ÏÄÉ ÇÔ¼ö(Zernike function)¶ó ÇÏ´Â µ¥ ÀÌÁ¦ ÀÌ°ÍÀÌ Æĸé¼öÂ÷¸¦ ³ªÅ¸³»´Â Ç¥ÁØ Çü½ÄÀÌ µÇ¾ú´Ù. ÀÌ ÇÔ¼ö´Â ¿øÇüÀÇ µ¿°ø¿¡ ´ëÇÑ ÀÓÀÇÀÇ ÇÔ¼ö¸¦ ¼­·Î Á÷±³ÇÏ´Â ÇÔ¼öÀÇ Á¶ÇÕÀ¸·Î ³ªÅ¸³»±â À§Çؼ­ µµÀÔµÈ Æ¯¼öÇÔ¼ö·Î °¢°¢ÀÇ Ç×ÀÌ ¿¹ÀüºÎÅÍ ¾Ë·ÁÁ® ÀÖ´ø ¿Â°® Â÷¼öÀÇ ¼öÂ÷¿Í Àß ´ëÀÀµÇµµ·Ï ÇÑ °ÍÀÌ´Ù.

µ¿°øÇÔ¼ö $P(\rho, \theta)$ÀÇ À§»óÇÔ¼ö $\Phi(\rho, \theta)$¸¦ ´ÙÀ½°ú °°ÀÌ Á¦¸£´ÏÄÉ ÇÔ¼öÀÇ Á¶ÇÕÀ¸·Î ³ªÅ¸³»ÀÚ. \[ \Phi(\rho, \theta) = \sum_{n,m} \alpha_n^m Z_n^m(\rho, \theta). \] ¿©±â¼­ $Z_n^m(\rho, \theta)$°¡ Á¦¸£´ÏÄÉ ÇÔ¼öÀÌ°í, ÀÌÀÇ °¢°¢ÀÇ °è¼ö $\alpha_n^m$ °ªÀÌ °¢Á¾ ¼öÂ÷¸¦ ³ªÅ¸³½´Ù. Á¦¸£´ÏÄÉ ÇÔ¼ö´Â ¹Ý°æ$(\rho)$°ú ¹æÀ§°¢$(\theta)$ÀÇ ÇÔ¼ö·Î ´ÙÀ½°ú °°ÀÌ µÎ Á¾·ù·Î ºÐ¸®µÈ´Ù. \[ Z_{c, n}^m(\rho, \theta) = R_n^m(\rho) \cos m \theta, \] \[ Z_{s, n}^m(\rho, \theta) = R_n^m(\rho) \sin m \theta. \] ¿©±â¼­ ¹Ý°æ¹æÇâ ÇÔ¼ö $R_n^m(\rho)$´Â Á¦¸£´ÏÄÉ ÇÔ¼öÀÇ ÇÙ½ÉÀÌ µÇ´Â ºÎºÐÀ¸·Î Á¦¸£´ÏÄÉ ´ÙÇ×½Ä(Zernike polynomial)À̶ó ÇÑ´Ù. ¶Ç µÎ Â÷¼ö $n,m$Àº 0 ÀÌ»óÀÇ Á¤¼öÀ̸鼭 $n-m$Àº 0 ÀÌ»óÀÇ Â¦¼ö °ªÀ» °¡Áø´Ù. Á¦¸£´ÏÄÉ ÇÔ¼ö´Â °¢°¢ÀÇ $n,m$¿¡ ´ëÇØ $m=0$À» Á¦¿ÜÇÏ°í cos°ú sinÀÇ µÎ ÇÔ¼ö°¡ ½ÖÀ¸·Î À־ $\alpha_n^m$ °ªµµ ½ÖÀ¸·Î Á¸ÀçÇÑ´Ù.


Á¦¸£´ÏÄÉ ´ÙÇ×½Ä_Á¦¸£´ÏÄÉ ´ÙÇ×½ÄÀ» $m$(¼¼·Î), $n$(°¡·Î)ÀÇ °¢ Â÷¼ö¿¡ ´ëÇØ Ç¥½ÃÇÏ¿´´Ù. ÀÌ´Â $n\geq m$, $n-m$ÀÌ Â¦¼ö¿¡¼­ Á¤ÀÇ µÇ°í, ÃÖ¼Ò Â÷¼ö°¡ $m$ÀÎ $n$Â÷ ´ÙÇ×½ÄÀÌ´Ù.

$m \backslash n$

0

1

2

3

4

5

0

1

-

$-1+2\rho^2$

-

$1-6\rho^2+6\rho^4$

-

1

-

$\rho$

-

$-2\rho+3\rho^3$

-

$3\rho-12\rho^3 +10\rho^5$

2

-

-

$\rho^2$

-

$-3\rho^2+4\rho^4$

-

3

-

-

-

$\rho^3$

-

$-4\rho^3+5\rho^5$

4

-

-

-

-

$\rho^4$

-

5

-

-

-

-

-

$\rho^5$

6

-

-

-

-

-

-

´ÙÀ½ ±×·¡ÇÁ´Â Á¦¸£´ÏÄÉ ´ÙÇ×½ÄÀ» ¿©·¯ $n, m$¿¡ ´ëÇØ º¸¿©ÁØ´Ù. À̸¦ º¸¸é ¾ðÁ¦³ª $R_n^m(1) = 1$ÀÌ°í, $m\ne 0$ÀÏ ¶§ $R_n^m(0) = 0$ ÀÓÀ» ¾Ë ¼ö ÀÖ´Ù.

graph

Á¦¸£´ÏÄÉ ´ÙÇ×½Ä_ $R_{n}^{m}(\rho)$ÀÇ Á¦¸£´ÏÄÉ ´ÙÇ×½ÄÀÇ ±×·¡ÇÁÀÌ´Ù. ¼±ÅÃµÈ $m$¿¡ ´ëÇؼ­ ¿¬ÇÑ ±×·¡ÇÁ·Î $n=m, m+2, ... $ÀÇ 7°³ ±×·¡ÇÁ¸¦ ÇѲ² ³ªÅ¸³»¸ç, ¾Æ¿ï·¯ ÁöÁ¤µÈ $n$ °ª¿¡ ´ëÇؼ­´Â ±½°í ºÓÀº ±×·¡ÇÁ·Î ³ªÅ¸³½´Ù.

Æĸé¼öÂ÷ÀÇ ÀÔüÀûÀÎ ¸ð¾ç

¼öÂ÷¸¦ ³ªÅ¸³»´Â $\alpha_n^m$ °ªÀÌ ´Ù¾çÇÏ°Ô Á¶ÇյǾúÀ» ¶§ µ¿°øÇÔ¼öÀÇ ¸ð¾çÀ» ¾Æ·¡ ±×·¡ÇÁ¿¡ ³ªÅ¸³»¾ú´Ù. '¼öÂ÷Á¦°Å'·Î ¸ðµç ¼öÂ÷Ç×À» ¾ø¾Ø ÈÄ ÇÑ °è¼ö¸¸À» º¯°æÇϸé ÀÌ ¼öÂ÷¿¡ ´ëÇÑ Æĸé¼öÂ÷ÀÇ ±×¸²À» »ìÆ캼 ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î '[0,2] focus'¸¦ º¯°æÇϸé $Z_2^0 (\rho, \theta) = \alpha_2^0 (-1+2\rho^2) $ÀÇ $\alpha_2^0$ °ªÀÌ º¯ÇÒ ¶§ÀÇ ÆĸéÀÌ ¿Ö°îµÇ´Â ±×¸²À» ³ªÅ¸³½´Ù. ÀÌ´Â ÀüüÀûÀ¸·Î ÃÊÁ¡À» ±âÁØÀ§Ä¡¿¡¼­ ¾ÕÀ¸·Î³ª(+) µÚ·Î(-) À̵¿½ÃŲ´Ù. µû¶ó¼­ À̸¦ 'defocus' ¼öÂ÷¶ó ÇÑ´Ù. (À̵¿µÈ Á¡À» »õ·Î¿î ÃÊÁ¡À¸·Î »ïÀ¸¸é ¼öÂ÷°¡ ¾ø¾îÁö¹Ç·Î ¼öÂ÷°¡ ¾Æ´Ï¶ó°í ÇÒ ¼ö ÀÖ´Ù)

graph

Æĸé¼öÂ÷ °ª¿¡ µû¸¥ µ¿°øÇÔ¼ö_ $\alpha$À» ´Þ¸® ÇÒ ¶§ÀÇ µ¿°øÇÔ¼ö¸¦ º¸¿©ÁØ´Ù. $\alpha$°ªÀº ¿À¸¥ÂÊÀÇ ½½¶óÀÌ´õ·Î º¯°æÇÒ ¼ö ÀÖÀ¸¸ç, '¼öÂ÷Á¦°Å' ¹öÆ°À» ´©¸£¸é ¸ðµç °ªÀÌ 0À¸·Î ¼³Á¤µÈ´Ù. $x$, $y$ Æò¸éÀÌ Ãâ»çµ¿°øÀÇ ¸éÀ¸·Î ³ì»öÀÇ ¿øÀº µ¿°øÀÇ °¡ÀåÀÚ¸®¸¦ º¸¿©ÁØ´Ù. ¸¶¿ì½º¸¦ ²ø¸é ±×¸²ÀÌ È¸ÀüÇؼ­ ÀÔüÀûÀÎ ¸ð½ÀÀ» »ìÆ캼 ¼ö ÀÖ´Ù.

°¢°¢ÀÇ °è¼ö°¡ Æĸé¼öÂ÷¸¦ ¾î¶»°Ô ¿Ö°î½ÃÅ°´ÂÁö À§ ±×¸²À» ÅëÇؼ­ Á» ´õ ¾Ë¾Æº¸ÀÚ.

$m=0$¿¡ ÇØ´çÇÏ´Â ¼öÂ÷¸¸ ÀÖÀ¸¸é ÀüüÀûÀ¸·Î ±¤Ãà¿¡ ´ëÇØ È¸Àü´ëĪÀÇ ¸ð¾çÀ» ÇÏ°Ô µÈ´Ù. $n=0$Àº µ¿°ø Àüü¿¡ °ÉÃļ­ ÀÏÁ¤ÇÑ °ªÀÇ À§»óÀÌ ´õÇØÁö´Â °æ¿ì·Î¼­ °á°úÀûÀ¸·Î »ó¿¡´Â ¿µÇâÀ» ¹ÌÄ¡Áö ¾Ê´Â´Ù. $n=2$´Â Æĸé¼öÂ÷°¡ ±¸¸éÀ» ÇϰԵǹǷΠ¼öÂ÷°ª¿¡ ºñ·ÊÇÏ°Ô µ¿°ø ÂÊÀ¸·Î ÃÊÁ¡ÀÌ ´ç°ÜÁø´Ù. $n=4$´Â ±¤ÃàÀÇ Á߽ɰú °¡ÀåÀÚ¸®°¡ ¿À¸ñ-º¼·ÏÀÌ ¼­·Î ¹Ý´ë·Î µÇ¾î ÀÖ¾î À̸¦ Åë°úÇÏ´Â ±¤¼±ÀÌ ±¤Ãà»ó¿¡¼­ ¼­·Î ´Ù¸¥ À§Ä¡¿¡ Áý¼ÓµÉ °ÍÀ» ½±°Ô ¿¹»óÇÒ ¼ö ÀÖ´Ù. ÀÌ´Â ÀϹÝÀûÀÎ ±¸¸é¼öÂ÷ÀÇ Æ¯¼ºÀÌ´Ù.

ÇÑÆí, $m=1$ÀÇ °æ¿ì´Â ¹æÀ§°¢ $\theta$¿¡ ÀÇÁ¸Çϴ Ư¼ºÀÌ $\cos\theta$³ª $\sin\theta$°¡ µÇ¾î °¢°¢ÀÇ °è¼ö°¡ Á¸ÀçÇÑ´Ù. ¸¸ÀÏ $\cos$ °è¼ö¸¸ ºÎ¿©ÇÑ´Ù¸é ¾ðÁ¦³ª $y$ Ãà¿¡ ´ëÇØ ¹Ý´ëĪÀÇ ±¸Á¶¸¦ ÇÏ´Â °ÍÀ» º¼ ¼ö ÀÖ´Ù. $n=1$ÀÏ ¶§¿¡´Â Æĸé¼öÂ÷°¡ Æò¸éÀ» À¯ÁöÇϸ鼭 ±â¿ï¾îÁö´Â ÇüÅÂÀÌ´Ù. µû¶ó¼­ ÀÌ °æ¿ì´Â µ¿°øÀ» Åë°úÇؼ­ ³ª¿À´Â ÆĸéÀÌ ±¸¸éÀ» ±×´ë·Î À¯ÁöÇϸ鼭 ±× ¹æÇâÀ¸·Î ±â¿ï¾îÁö±â ¶§¹®¿¡ ÃÊÁ¡ÀÌ ±¤Ãà¿¡¼­ ¹þ¾î³¯ °ÍÀÌ´Ù. $n=3$ÀÇ °æ¿ì´Â µ¿°øÀÇ Áö¸§¼±À» ±âÁØÀ¸·Î ¾çÂÊÀÌ °¢°¢ ÇϳªÀÇ ¿À¸ñº¼·ÏÇÑ ÇüŸ¦ ¶í´Ù.

ÀÌ·¸°Ô $m, n$ °è¼ö·Î ÁÖ¾îÁö´Â °¢°¢ÀÇ Æĸé¼öÂ÷´Â ±âÁ¸¿¡ ¾Ë·ÁÁø ¿©·¯ Á¾·ùÀÇ ¼öÂ÷¿¡ ´ëÀÀµÈ´Ù. ´ÙÀ½Àº Á¦¸£´ÏÄÉ ÇÔ¼öÀÇ °¢°¢ÀÇ °è¼ö $\alpha$¿Í ¼öÂ÷ÀÇ Á¾·ù¿Í °ü·Ã½ÃŲ °ÍÀÌ´Ù.


°¢Á¾ ¼öÂ÷¿Í Á¦¸£´ÏÄÉ °è¼ö_3Â÷ ¼öÂ÷±îÁö¿Í Á¦¸£´ÏÄÉ ´ÙÇ×½ÄÀÇ °è¼ö¿ÍÀÇ °ü°è¸¦ ³ªÅ¸³½´Ù.

#

$m$

$n$

$Z_n^m$ ÇÔ¼ö

¼öÂ÷ÀÇ Á¾·ù

$Z_0$

0

0

1

piston

$Z_1$

1

1

$\rho\cos\theta$

x-tilt

$Z_2$

1

1

$\rho\sin\theta$

y-tilt

$Z_3$

0

2

$-1+2\rho^2$

defocus

$Z_4$

2

2

$\rho^2\cos 2\theta$

astigmatism 0¡Æ

$Z_5$

2

2

$\rho^2\sin 2\theta$

astigmatism 45¡Æ

$Z_6$

1

3

$\rho(-2+3\rho^2)\cos\theta$

x-coma

$Z_7$

1

3

$\rho(-2+3\rho^2)\sin\theta$

y-coma

$Z_8$

0

4

$1-6\rho^2+6\rho^4$

spherical


_ 3Â÷ ¼öÂ÷_ ±¸¸é¼öÂ÷_ Çö¹Ì°æ_ ¹æÀ§°¢_ À§»ó_ ÃÊÁ¡_ ±¤Ãà_ ±¤¼±_ Æĸé



Copyright ¨Ï 1999~ physica.gnu.ac.kr All rights reserved